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1. Introduction

In this paper, F' will be a field of characteristic different from 2, 3 and 5 and algebras
will be considered over this field. Recall that an algebra A is power-associative if every
subalgebra of A generated by a single element is associative.

The class of commutative power-associative algebras is widely studied since the works
of A.A. Albert ([1], [2]). This class includes all Jordan algebras and there are some
results connecting these two classes of algebras. Albert ([2]) defined the degree of a
simple commutative power-associative algebra A to be the maximum number of mutually
orthogonal idempotents in Ag, where K is the algebraic closure of the center of A, and
proved that if A has degree greater than 2, then A is a Jordan algebra. If A has degree
2, there exist simple algebras which are not Jordan, if the characteristic of F is p > 5
([3], [9])- In characteristic zero, Kokoris ([10]) proved that every semisimple commutative
power-associative algebra is a Jordan algebra.

Another question connecting these two classes was asked by Albert ([1]): for Jordan
algebras, it is true that finite dimensional nil algebras are nilpotent; is the same true
for commutative power-associative algebras? The answer is negative. D. Suttles showed
that there exists a 5-dimensional commutative power-associative nil algebra which is not
nilpotent ([13]). Since then, many authors have investigated the validity of the following
question, known as Albert’s Problem: “Is every finite dimensional commutative power-
associative nilalgebra solvable?” For some particular cases, there are positive answers
for this question. See [4] and [11] for a status of the solved cases. Related to Albert’s
Problem, representations of commutative power-associative nil algebras have also been
studied. See, for instance [5] and [6].

The aim of this paper is to investigate the structure of unital commutative power-
associative modules for the algebra H,(F) of symmetric n X n matrices over the field
F, with the Jordan product, for n > 3. It is well known that H,(F) is a simple Jordan
algebra and the structure of unital Jordan modules for this algebra was obtained by
N. Jacobson in [7] by means of describing the structure of the unital enveloping algebra
of H,(F). We reobtain this classification in a direct way as a consequence of the main
theorem of this paper (Theorem 8.1): we classify the irreducible unital commutative
power-associative modules for H,,(F') and prove that there is, up to isomorphisms, only
one which is not Jordan. Moreover, we show that every finite dimensional unital module
M for this algebra is completely reducible.

The strategy to prove the main theorem consists in considering the Peirce Decompo-
sition of the module M relative to a complete set of orthogonal idempotents of H, (F')
and choosing a convenient basis for the component Mjs. In this basis, each element
will generate a submodule isomorphic to an irreducible Jordan module. The non Jordan
component will be the ideal B considered by Schafer ([12]) for the split null extension
A=H,(F)® M.

In Section 2 we state the known results concerning the structure of commutative
power-associative algebras which will be needed here. Section 3 is devoted to present
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examples of irreducible unital modules for H,,(F'). They will be shown to be a complete

list of irreducible unital modules for this algebra. In Section 4 we prove general results

for H,(F)-modules which will be used in Sections 5 and 6, in order to identify the
generators of the irreducible Jordan submodules of an arbitrary commutative power-
associative unital module M. In Section 7 we find out the non Jordan submodules of
M. Finally, in Section 8, we prove that M is completely reducible and that examples of
Section 3 are the only possible irreducible components of M.

2. Preliminaries

It is well known that an algebra A is commutative and power-associative if and only
if A satisfies the following identity

2?2? — x(x2?) =0,
which is equivalent to its linearization
[z,y,2z,w] =0, (2.1)
where

[z, y, 2, w] = 4((zy) (zw) + (z2)(yw) + (zw)(y=z))
(y(zw) + z(yw) + w(yz)) — y(z(zw) + z(zw) + w(zz))
(z(yw) + y(zw) + w(zy)) — w(z(yz) + y(z2) + 2(xy)).

Recall that a F-vector space M with left and right actions - of A on M is a commuta-

— T
-z

tive power-associative bimodule for A if the split null extension A+ M is a commutative
power-associative algebra. In particular, a-m = m - a, for a € A and m € M. For this
reason, we will refer to these bimodules as (left) modules. It is straightforward to see
that M is a commutative power-associative module for A if, and only if,

40 (a-m)=a®* -m+a-(a®> m)+2a- (a-(a-m)), (2.2)
for a € A and m € M.

Let A be a commutative power-associative algebra and let e € A an idempotent. The
Peirce Decomposition of A relative to this idempotent is

A=A (1) A(3) ® A(0),

where A.(A\) ={x € A:ex = Az}, for A\ =0,1,

relations

%. These subspaces satisfy the following
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Fora € Aand A € {0,1, 3}, we denote by a, the component of a in the subspace A¢(\).
As proved in [2], we have, for each z € Ac(1), a linear mapping S (2): Ac(3) = A(d)
defined by S1(z)(y) = (zy)y, for y € Ac(3). Moreover, S: A.(1) — [Endp (Ae(%))ﬁ_,
which sends z € A¢(1) to 251 (), is a homomorphism of Jordan algebras. Therefore,

B.=kerS={be A.(1): bA.(3) C A.(0)} (2.3)

is an ideal of A.(1) and A.(1)/B. is a Jordan algebra.

Let A be commutative power-associative algebra with unity 1 and let ey, ..., e,, n > 3,
be a set of pairwise orthogonal idempotents such that 1 =e; +---+e,. Then the Peirce
Decomposition relative to this set of idempotents is

A= P A, where Ay = Ac (1), Aij = Ac,(3) N A, (3), if i < j.

1<i<j<n

If j > ¢ we denote Aj; = A;;. These subspaces satisfy

Ai C A“‘,
AiAiy C Ay + Ay (0 F#7),
A% CAu+ Ay (i #7), (2.4)

AijAjk C A;p (i,j7 k diStinCt),
AijAp =0 (k#1i,jand [ #4,j).

3. Examples of irreducible modules

Let J be a Jordan algebra with 1. Recall that its universal multiplication envelope
U(T) decomposes as

UT) =Uo(T) @UL(T) ©U(T),

D=

where 1 (J) is the universal unital multiplication envelope of J and Uy(J) ® U, (T) is
canonically isomorphic to S(J), the special universal envelope of J, via o — 20 (see
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[8, Chapter 2]). Moreover, this correspondence maps U 1 (J), the universal envelope for
semi-unital representations, to S1(J), the unital special universal envelope of 7.

Let A be an associative algebra with 1 and suppose that J is a subalgebra of the
Jordan algebra A(t). Let M be an associative unital left A-module, with the action of
a € Aonm € M be denoted by am. Then, defining

1
a-m=m-a=zam, fora€J,meM,
M became a J-Jordan module, which corresponds to a semi-unital representation o. By
the above correspondence, 20 is a unital associative specialization. In general, 2¢ is not
a Jordan representation. In fact, if 20 is a Jordan representation, we must have

(xyz —x?oy)m =0, forallz,y € J,mec M.

For instance if A = M, (D), with n > 1 and D any division algebra, taking x = e;; and
y = e12 + ea1, we should have y - m = 0, for every m € M. Therefore, any irreducible
left A-module could not be a Jordan J-module with the above action. However, 20 is a
representation of J as a commutative power-associative algebra, since the new action is
given by

a-m=m-a=am, fora€ J,mée M,

and (2.2) is clearly satisfied by any a € J and m € M, by the associativity of the original
action of A on M.

In this section we present the relation of irreducible unital commutative power-
associative modules for H,(F), for n > 3 which can be obtained from the structure
of Jordan modules. Recall that the multiplication in H,(F) is the Jordan product
roy = %(xy + yx) where zy denotes the usual matrix multiplication. A linear basis
for H,(F) is

€, = €5 (izl,...,n), U5 = €45 + €54 (1§z<]§n), (31)

where e;; stands for the elementary matrix which has 1 in the entry (¢, j) and 0 otherwise.
We also denote u;; = u;j;, for @ < j.

Example 3.1. It is well known that the H,(F)-regular module is an irreducible Jordan
module. We denote this module by H,,(F') and, for a € H, (F’), the corresponding element
in H,(F) will be denoted by @. Therefore, the action of H,(F) in H, (F') satisfies, for
distinct 4, 5, k, [,

— — — — 1
€ ¢ ==¢;, ¢ ¢ =0,¢ ujy=0, €; * Ujj = 5Uqgj,

Uik, Wij - Uy = 0, (3.2)

_— o = —_ 1
Uij - Uij = € + €5, Uij - Ujk = 3

—_ 1— —
U5 * €5 = §uij, Ujj * € = 0.
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Example 3.2. It is also known that S, (F), the set of skew-symmetric matrices, is an
irreducible Jordan module for H, (F). The action of H,(F) on S,(F) is also by the
Jordan product, that is

a-v=v-a=g(av+va), forac H,(F),veS,(F).

Therefore, S, (F) is an example of irreducible commutative power-associative module for
Hn(F) IfVZ‘j = €ij —€ 4, forl < 1,7 <n,t 75 7, then Vji = —Vij and {Vij 1<i<i < ’/l}
is a linear basis of S, (F'). The action of the canonical basis of H,(F') given in (3.1) on
the elements v;; is

_ 1 _ _ _ 1 _
€; " Vij = 5Vij, €k - Vij = 0, U5 * Vij = 0, U5 * Vik = §Vik7 U5 * VEL = 0, (33)

for distinct 4, j, k, [.

Example 3.3. Recall that the unique irreducible unital M, (F')-associative left module is
the set M,,«1(F) of n x 1 matrices with entries in F' with the action given by matrix
multiplication. Therefore,

m-a=a-m=am, forae€ H,(F)andm € M,y (F),

where am stands for the usual matrix multiplication, defines a commutative power-
associative H,,(F')-module structure on M, x1(F'). This module is not Jordan as noted
before. The action of H,,(F') on the basis {m1,...,my,} of M, x1(F),

€; -y = My, ej cm; = 0, uij . mj =m;, Uik -mj = 07 (34)

for distinct 4, j, k € {1,...,n} will also be used.

In next sections we shall prove that H,(F), S,(F) and M, «1(F) are the only irre-
ducible commutative power-associative modules for H,, (F') and every finite dimensional
commutative power-associative module for H,, (F") is completely reducible.

4. Commutative power-associative modules

From now on, let M be a commutative power-associative module for H,(F) and
consider A = H,(F) + M the split null extension of M, as described above. The action
of an element a € H,(F) on m € M will be denoted simply by am. Also, the Jordan
product symbol in H, (F) will be omitted. Therefore, the multiplication in H,, (F) is, for
distinct 4, 5, k, [,

e% =e;; eie; =05 eju;; = %uij; e;uj = 05 (4.1)

2 . _ 1 . —
Uj; = €; + €55 iU = FUik; UijUkl = 0.



L.S.1. Murakami et al. / Journal of Algebra 644 (2024) 411—427 417

Recall that eq,...,e, form a set of orthogonal idempotents and 1 = e; + --- + e,.
Let A=, <;<j<, Aij be the Peirce decomposition of A for this set of idempotents. If
Mij = Aij N ]\4-7 then

In what follows, identity (2.1), relations (2.4) and (4.1) and the fact that u;; = uj;
will be frequently used without being mentioned.

Lemma 4.1. Let M be a H,(F)-module, let i,j,k € {1,...,n} be distinct and let z;y, €
M;y.. Then,

duij(uijzin) = Zik- (4.2)
Proof. It follows from [e;, wij, Uij, Zik] = wij (Uij2ik) — izik. O

Lemma 4.2. Let M be a H,(F)-module, let i,j,k,l € {1,...,n} be distinct and let z; €
Mkl- Then,

2uij (ujk2ht) = Wik 2k- (4.3)
Proof. It follows from [ugi, Uj, Ukj, 2ki] = 4uij(Ujk2zR) — 2Uik2k. O

Lemma 4.3. Let M be a H,(F)-module, let i,j,k € {1,...,n} be distinct and let z;, €
Mjy..

If wjrzjn =0 then 2uji(uwinzjr) = —UijZjk. (4.4)
Proof. It follows from [e;, ujk, Wik, zji] = wjr(Wirzjr) + %uijzjk. O
Proposition 4.4. Let M be a H,(F)-module and let z15 € M1s. Define

z1j = 2uj2212, forj >3 and (4.5)
zij = 2uinzy  fori,j =2, 0 #j. (4.6)

Then, for distinct i,j,k € {1,...,n}, we have

2uijzik = Zik, for k> 2, (4.7)

2uijzy = 2k, Jori,5 = 2. (4.8)

Proof. Definition (4.6) is a particular case (j = 1) of (4.7). The other cases are obtained
by multiplying (4.6) by 2uy; and 2uy; (k > 2):
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(4.2)
2uizi; = dui(uizy) = 215,

(4.3) (4.6)
2ukizij:4uki(ulizlj) = 2uk121j = Zkj-

In order to obtain relations (4.8) for k = 1, we multiply (4.5) by 2us; and 2u;; (i > 3):

(
Qugjz1j = duja(ujez12) = 212,

2u;j215 = 4uij(ujoz12) (42 Qnz12 = 214
The remaining cases (k > 2) follow using (4.6) and (4.9) in
[617U1j,um,z1k] = izjz' - %Uikzjk- O
5. Submodules isomorphic to S, (F)
Suppose there exists a nonzero element v15 € M75 such that

U12V12 = 0.

(5.1)

The aim of this section is to prove that the submodule of M generated by v is isomor-

phic to the module S, (F) of Example 3.2.
Define

V15 = 2Uj2U12, fOI‘j > 3;
vij = 2upvy, forid,j > 2, i # j;

vj1 = —vy; for j > 2.
Note that definitions (5.2) and (5.3) are similar to (4.5) and (4.6).
Lemma 5.1. For the elements v;j defined in (5.1)-(5.4), we have
vj; = —v;; for everyi,j € {1,...,n}, i #j.

Proof. The relation holds if 1 € {7, j}, by definition (5.4).
If j > 3, then

(5.3) (5:2) (4.4) (5.3)

For distinct 7,7 > 3, we use (5.3), (4.7) and (5.6) in

1 1
[617U12,U1j71}2i] = 7Y5i + 7ij,

which completes the proof. O

5.2
=" duia(ujoviz) =" —2uyv12 = —jo.

(5.5)
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Lemma 5.2. For the elements v;j defined in (5.1)-(5.4), we have
wi;vi; =0, for everyi,j € {1,...,n}, i # j.

Proof. If {i,j} = {1, 2}, the relation holds by (5.1) and (5.4). For j > 3, we have

ot

4 4.2 4

ot

(

5.2
’Ltgjvlj (:) 2’LL2j(’LL2j’U12) (Z —2’LL2j(’U,2j’U21) (Z) —%’Ugl = %’Ulg. (57)
Using (5.1), (5.2), (5.3), (5.6) and (5.7), we obtain
0 = [’LL127U2]‘, U2j71)12] = 2U1j1)1j (] Z 3) (58)

The remaining cases (i,j > 2, i # j), follow from (5.4), (4.7) and (5.8) in
le1, i, U1, Vij] = —%uijvij. O
Lemma 5.3. For the elements v;; defined in (5.1)-(5.4), we have
2u;jvji = vig, for distinct i,j5,k € {1,...,n}.

Proof. By Proposition 4.4, it only remains to prove the case k = 1. For i,j > 2, i # j,

we have
(4.7) (5.5) (5.3) (4.4) (5.4)
V1, — 2U1j1]ji = —2U1j1}ij = —4u1j(ui11}1j) = 2uij1}1j = —2uijvj1.
_ (5.4) .
Then, 2u;jvj1 = —v1; = v;1, which concludes the proof. O

By Lemmas 5.1, 5.2 and 5.3, {v;; : 1 < i < j < n} satisfy relations (3.3). As S, (F)
is an irreducible H,,(F)-module and vi5 # 0, the submodule of M generated by v1o is
isomorphic to S, (F). Therefore, we have proved:

Theorem 5.4. Let M be a H,(F)-module. If there exists a nonzero element viz € M

such that uiov12 = 0, then the submodule of M generated by vio is isomorphic to the
module S,,(F) of Example 5.2.

6. Submodules isomorphic to the regular module
Now, suppose there exists a nonzero element z15 € Mo such that uio2z19 # 0. Let
U12212 — €1 + €2, &; € Aiiy t=1,2. (61)

As in (4.5) and (4.6), define
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21]‘ = 2’u]‘2212 (] 2 3) and Zij = 2ui12’1]‘ (’L,] Z 2, Z#])

Moreover, let

zin = 2uziz (1> 3); (6.2)
Z21 = 2U23%31; (6.3)
ei = ei(uriz1s) (1 > 2). (6.4)

We shall prove that wis = %(2’12 + 291) generates a submodule isomorphic to the
H, (F)-regular module.

Lemma 6.1. For the elements z;; and €; defined above, we have
Uij2i5 = € + €5, foralli,je {1,...,77/}, i j. (65)

Proof. For i = 1 and j = 2, the Lemma follows from (6.1).

Note that e1 (u1az12) ‘= ¢ and, if j > 3, using (4.5), (4.6) and (6.1) in
2, u1j, ugj, z12] = 3 (u2jzj2 + €1 — ea(uajzje) — urj21;)

and multiplying the above relation by e;, we obtain the other cases of identity

er(uijzy) =e1 (> 2). (6.6)
As uijz1; € A1 + Ajj, using (6.4) and (6.6), we obtain

uijz; =¢e1+¢; (J>2). (6.7)
Relation

uijzi; =€ +e; (4,5 22,0 # j) (6.8)

is obtained by using (4.6), (4.8) and (6.7) in [e1, w14, Usj, 215]. Now, we use (4.7), (6.1)
and (6.2) to obtain

[e1, uri, w12, zi2) = 5 (winzin — e1(uazin) —&;) and

1
[ei, uti, ur2, zi2) = 5 (winzin — €i(uizin) —€1).
Comparing these two identities, we obtain
e1(uizin) —e1 = ei(unzin) —& € Ay N Ay = 0.

Therefore, e1(u;121) = €1, €i(uinzi1) = &; and



L.S.1. Murakami et al. / Journal of Algebra 644 (2024) 411—427 421

uirzin =1 +¢&; (i >3). (6.9)
It only remains to prove the identity for the element z9;. First, observe that

6.2 4.2
U212k1 (:) 2U21(U21Zk2) (:) %ZkQ (k Z 3) (610)

Then, using (6.3), (6.8), (6.9) and (6.10), we obtain

le1, 12, u23, 231] = %(U12Z21 —e1(u12221) — 62) and

[e2, u12, u2s, 231] = 3 (u12221 — €2(u12221) — €1).
Proceeding as before, we conclude that ujsz97 =1 +¢e9. O
Lemma 6.2. For the elements z;; and ¢; defined in the beginning of this section, we have
duiie; = zij + 2z, foralli,je{l,...,n}, i#j. (6.11)

Proof. Fori,j > 2,4 # j, the result follows using (4.6), (4.8) and (6.5) in [e1, 1i, Uji, 214
For i =1 and j > 3, we use (4.5), (4.7), (4.8), (6.2) and (6.5) to obtain

[61, Ulj,UQj, ng] = 2ulj5j — el(uljej) — %le — %ZjL (612)

Therefore, 2u1j5j — 61(@61]‘8]‘) = %(le + Zjl) S Mlj. Write U1;€5 = a+ b, with a € My,
and b € M;;. Then, the following element belongs to Mj;:

2u1j5j — 61(U1j€j) =2a+2b—a— %b =a+ %b
Then, a = 0 and uyje; € My;. So, from (6.12) we get
duyje; = 215 + zj1. (6.13)

Analogously, as in (6.12), using [e;, u1;, 12, 212] = 2uije1 — €j(uije1) — %(zﬂ + 215), we
obtain

durje1 = 215 + 241-

Now, using (4.7), (6.5) and (6.13) in [es, ua3, u13, 223], it follows that
dugs(u13223) = 231

and, multiplying by us3 and using (4.2) and (6.3), we get

1
U13223 = U23231 = 5221- (6.14)
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Then, we use (4.7), (4.8), (6.3), (6.5) and (6.14) in
[e1, 12, Uu23, 223] = 2u1262 — €1(u12e2) — %(212 + 221) and
€2, U2, 13, 213] = 2u1261 — ez(ur2e1) — 2 (221 + 212).

As before, we obtain 4uise9 = 219 + 291 and 4uq261 = 212 + 291, which concludes the
proof. O

Lemma 6.3. For the elements z;; and €; defined in the beginning of this section, the
following identities hold

22k = zi,  and 2wz = 2k, for distinct i, j,k € {1,...,n}.

Proof. Part of the verification of this Lemma was already done in Proposition 4.4, (6.10)
and (6.14). Let us prove the remaining cases.
We have

(4.2) 4
u3nZo1 = 2uo3(u23231) = 5231
Relation

uyjakg =2k (k22 j#K) (6.15)

is obtained using (4.6), (4.8), (6.5) and (6.11) in [e1, w1, U1k, 215]. Finally, using also
(6.15), we get

Qipzin =z (1,k>2,i# k) and 2upzii=za (4,5 > 2, i # j)
computing [eq, uis, Ui, 2k;) and [e;, wij, u14, 25i], respectively. O
Now, for i,j € {1,...,n}, i # j, define
wi; = 5(2ij + 251)-

Note that wio # 0, since ujswis = €1 + €2 = w1212 # 0. It is straightforward to verify
that the action of H,(F) on {e;,w;; : i, = 1,...,n} is the same as given in (3.2),
replacing €; with €; and u;; with w;;, using Lemmas 6.1, 6.2 and 6.3. Again, as the
regular module is irreducible and wiy # 0, the submodule of M generated by wis is
isomorphic to the regular H,(F)-module. Also, observe that, in terms of 212, we write
291 = Sua3 (U12 (u13z12)). Therefore, we have proved:

Theorem 6.4. Let M be a H,(F)-module. If there exists a nonzero element z12 € My
such that uy22z12 # 0, then the submodule of M generated by wyis = %(212 + 291), where
291 = 8oz (ulg(ulgzlg)), is isomorphic to the regular H,(F)-module.
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7. Irreducible non Jordan modules

As n > 3, we are under the hypothesis of the results obtained in [12]. The following
results are proved in [12], for A a commutative power-associative algebra with n >
3 orthogonal idempotents eq,...,e,, such that 1 = e; 4+ --- 4+ e,, a set of elements
uyg,...,uy, such that eju;; = euy; = %uli and u?, = e; +e;, i = 2,...,n and
A= @? =1 A;j being the Peirce decomposition of A relative to this set of idempotents:

(B1) For ¢ =1,...,n, the subspaces
Bi :{beAm‘SbAik gAkk, for k = 1,...,71}

are pairwise isomorphic under the linear isomorphism which sends b € B; to bu;; €

Bj, for i # j, where u;; = 2uj;ui;. Moreover, the ideal defined in (2.3) for the

idempotent e;+e; can be obtained in terms of these subspaces as Be, e, = Bi+ B;.
(B2) The ideal

B:=> Bete,=»_ Bi+B;= éBi (7.1)
1

i#j i#j i=
satisfies B2 = 0 and B = 0 if and only if A is a Jordan algebra.

Given M, a unital commutative power associative module for H,,(F'), we will consider
the split null extension A = H,(F) 4+ M. Taking {e1,...,e,} to be the orthogonal set
of idempotents, the elements wujo, ..., u, € H,(H) will satisfy the above conditions.

Note that, for every b € By, we have, for distinct ¢, € {2,...,n},

ler, uii, uig, 0] = 2 (u1;b — wij(ugh)).
Therefore
wij(u1;b) = buyj, for distinet 4,5 € {2,...,n}. (7.2)

Lemma 7.1. Let M be a commutative power-associative module for H,(F) and let A =
H,(F)+M the split null extension of M. Then, the ideal B defined above for this algebra
A is contained in M.

Proof. Let b=0b; +---+ b, € B, where b; € B;, i =1,...,n. As B is an ideal of A, we
have b; = e;b € B. Recall that B; C A;; = Fe; ® M;;. Then, b; = a;e; + x;, with o; € F
and z; € M;;. Since B2 = 0, we must have 0 = bf = a?ei + a;x;; therefore, a; = 0, for
ali=1,...,n. Thenb=21+---+z, € M. O
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Proposition 7.2. Let M be a commutative power-associative module for H,(F). If M is
not a Jordan module then M contains a submodule isomorphic to a direct sum of r copies
of the module My «1(F) of Example 3.3, for a convenient positive integer r.

Proof. If M is not a Jordan module, the ideal B defined in (7.1) for the split null exten-
sion A = H,(F) + M is nonzero. By the previous lemma, B C M. Let {b11,...,b1,} C
M, be a basis of By. Foreachi=2,...,nand j=1,...,r, let

bij = u1iby;.

As mentioned in (B1), {b;1,...,b; } is a basis of B;, for all i.

Let M the subspace of M generated by {b1;, baj, ..., by}, that is, take the jth element
of B;, for all i = 1,...,r. Relation (7.2) and the properties of Peirce Decomposition
show that M; is an H,(F)-module isomorphic to the irreducible module M, «1(F') of
Example 3.3, since the action of H, (F') on M; is the same as (3.4). Therefore,

B=B&® - ®B,=M & & M,,
is isomorphic to a direct sum of r copies of the module M,,«1(F). O

Corollary 7.3. The module M, x1(F) given in the Example 3.3 is the only irreducible
unital module for the commutative power-associative algebra Hy,(F) which is not a Jordan
module.

8. Classification of finite dimensional unital modules

We are ready to prove our main theorem.

Theorem 8.1. Let F' be a field of characteristic different from 2, 3 and 5 and let n > 3
an integer. Then, there are, up to isomorphisms, three unital irreducible commutative
power-associative Hy(F)-modules: the regular H,(F)-module, and the modules S, (F)
and M, «1(F) of Examples 3.2 and 3.3. Moreover, every finite dimensional unital Hy, (F')-
module is completely reducible.

Proof. Let M be a finite dimensional unital H, (F")-module and let M = @; ;_, M;; be
the Peirce Decomposition of M.

Let B the ideal defined in (7.1) for the split null extension A = H,(F)+ M. By
Proposition 7.2, if M is not a Jordan module, we have a basis {b;; : i = 1,...,n;j =
1,...,r} of B, with b;; € M;;,i=1,...,n, and B isomorphic to the sum of r copies of
the irreducible module M,,«1(F) of Example 3.3. If M is a Jordan module, then B =0
and r = 0.

Define MY, = {m € Mz : uiam = 0} and let {vg),...,vg} be a basis of MYP,.

Complete to a basis {vg), ce v@, zg), cee zg)} of M (we could have t and/or s equal
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to zero). Then, we have ulgzg) #0,for k=1,...,t. For each k, let w§’§) = (z§’§) +z(k))

where zgf) = 8ugs (U12(U13Z§2))) Then I = {vg), . vg),wg), . ,wg)} is still a basis

of My, since xgg) =1(z 55) - zél ) € MY, and wgg) = zg) 1’52).
By Theorem 6.4, wg) generates a submodule isomorphic to the regular H, (F')-

module. Let w( )

(k)

€ M;; and E( ) e M, i,7 =1,...,n, be the elements produced starting
(4)

with w;5’ as in the beginning of Section 6, for k = 1,...,s. Also, by Theorem 5.4, v;4
generates a submodule isomorphic to S, (F). As well, let vg) € M, i,5 =1,...,n,
be the elements obtained from vglz) as in the beginning of Section 5, for [ = 1,...,t.
Weclalmthatcf{”, l(]k),s(k) ,7=1,....nl =1,...,t;k =1,...,s} is a lin-
early independent set This fact follows by observing that C' N My = {51(1), e ,egs)}
and CNM;; = {U” e S), 1(]1), .. .,ng-)}, for ¢ # j, and any linear combination of

elements in these sets can be transformed into a linear combination of elements in I by
multiplying for convenient elements wuq; and/or us;, depending if 4,5 € {1,2} or not,
using Lemmas 5.3 and 6.3 (for instance, for a linear combination of elements in C'N M3y,
multiply by w13 and, then, by us4; for C' N Maz, multiply only by wy3; for C' N Mss,
multiply by w13 and, then, by us3).

The same procedure used to show that C'N M;; is a linearly independent set shows
that this set is a basis of M;;: take some m € M;;. By multiplying for convenient
elements uy; and/or ug; we get an element in M;o which has basis I. Then, this element
f) and w12),l ,...,tand kK =1,...,s.
Multiplying again by the same uy; and/or ug; in the reverse order (if there are two) and

can be written as linear combination of v

using also Lemma 4.1, we obtain, on the one hand, a scalar multiple of m and, on the
other hand, a linear combination of elements in C'N M;;. For instance, if m € My3 then
%m = Ulg(ulgm); ifme M34 then %m = U13 (UQ4(U24(’U,13’ITL) ))

—— N———

€Mz €EMi2
Finally, let m € M;;. Then, for each j = 1,...,n, j # i, we have u;;m € M;; + M.

So, write
UM = Zij + Yi5 + T, (81)

with z;; € span{wg‘f),l <k<sh oy € span{vi(;-),l <1<t} and z; € Mj;. First, we
will show that y;; = 0. In order to prove this statement consider j # k (different from ¢)
and write

t t
Yij = Z Oézvx) and ik = Z Broy).
=1

=1

On the one hand, using [e;, u;;, uix, m] = 0 we obtain that oy + 5; = 0 and, on the other
hand, from e;[e;, u;;, uji, m] = 0, we conclude that oy — 5y = 0. Then, oy = 0 (= ), for
each [ =1,...,t. Consequently, y;; = 0 and we can rewrite (8.1) as
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s
(k)
UM = E VW~ + Zj,
k=1

where v, € F. Let n=m — > ;_, 2’yi5(k). Then,

%

S
uijnzuijm—Z'yiwg?):xeM-» forj=1,...,n.

3i>
k=1

Therefore, n € B; and m = n+ Y ;_, 2%51@ € B; + span(C N M;;), that is M;; =

B, +span(C'NM;;). Moreover, as u;; B; € B; € Mj; and uijsgk) € M;j, for j #iand k =

1,..., s, we conclude that B;Nspan(CNM;;) = 0. This means that {b;1, ..., by JU(CNM,;)

is a basis of M;;.

We have completely described the Peirce components of M, producing a basis of
each one of these components, in a way that they also form bases for the irreducible
submodules of M: we have obtained that M direct sum of r copies of M,,«1(F), t copies
of S, (F') and s copies of the regular H,,(F')-module. O

As a consequence, we reobtain the classification of irreducible unital Jordan modules
for H, (F) due to N. Jacobson ([7]).

Corollary 8.2. Let n > 3 a integer. Then, there exist exactly two nonisomorphic irre-
ducible unital Jordan modules for H,(F): the regular H,(F)-module and S,(F), the
module of skew-symmetric matrices over F.

The description of irreducible unital commutative power-associative modules for
H,y(F) is quite different. The structure of these modules will be described in another

paper.
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