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1. Introduction

In this paper, F will be a field of characteristic different from 2, 3 and 5 and algebras 
will be considered over this field. Recall that an algebra A is power-associative if every 
subalgebra of A generated by a single element is associative.

The class of commutative power-associative algebras is widely studied since the works 
of A.A. Albert ([1], [2]). This class includes all Jordan algebras and there are some 
results connecting these two classes of algebras. Albert ([2]) defined the degree of a 
simple commutative power-associative algebra A to be the maximum number of mutually 
orthogonal idempotents in AK , where K is the algebraic closure of the center of A, and 
proved that if A has degree greater than 2, then A is a Jordan algebra. If A has degree 
2, there exist simple algebras which are not Jordan, if the characteristic of F is p > 5
([3], [9]). In characteristic zero, Kokoris ([10]) proved that every semisimple commutative 
power-associative algebra is a Jordan algebra.

Another question connecting these two classes was asked by Albert ([1]): for Jordan 
algebras, it is true that finite dimensional nil algebras are nilpotent; is the same true 
for commutative power-associative algebras? The answer is negative. D. Suttles showed 
that there exists a 5-dimensional commutative power-associative nil algebra which is not 
nilpotent ([13]). Since then, many authors have investigated the validity of the following 
question, known as Albert’s Problem: “Is every finite dimensional commutative power-
associative nilalgebra solvable?” For some particular cases, there are positive answers 
for this question. See [4] and [11] for a status of the solved cases. Related to Albert’s 
Problem, representations of commutative power-associative nil algebras have also been 
studied. See, for instance [5] and [6].

The aim of this paper is to investigate the structure of unital commutative power-
associative modules for the algebra Hn(F ) of symmetric n × n matrices over the field 
F , with the Jordan product, for n ≥ 3. It is well known that Hn(F ) is a simple Jordan 
algebra and the structure of unital Jordan modules for this algebra was obtained by 
N. Jacobson in [7] by means of describing the structure of the unital enveloping algebra 
of Hn(F ). We reobtain this classification in a direct way as a consequence of the main 
theorem of this paper (Theorem 8.1): we classify the irreducible unital commutative 
power-associative modules for Hn(F ) and prove that there is, up to isomorphisms, only 
one which is not Jordan. Moreover, we show that every finite dimensional unital module 
M for this algebra is completely reducible.

The strategy to prove the main theorem consists in considering the Peirce Decompo-
sition of the module M relative to a complete set of orthogonal idempotents of Hn(F )
and choosing a convenient basis for the component M12. In this basis, each element 
will generate a submodule isomorphic to an irreducible Jordan module. The non Jordan 
component will be the ideal B considered by Schafer ([12]) for the split null extension 
A = Hn(F ) ⊕M .

In Section 2 we state the known results concerning the structure of commutative 
power-associative algebras which will be needed here. Section 3 is devoted to present 
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examples of irreducible unital modules for Hn(F ). They will be shown to be a complete 
list of irreducible unital modules for this algebra. In Section 4 we prove general results 
for Hn(F )-modules which will be used in Sections 5 and 6, in order to identify the 
generators of the irreducible Jordan submodules of an arbitrary commutative power-
associative unital module M . In Section 7 we find out the non Jordan submodules of 
M . Finally, in Section 8, we prove that M is completely reducible and that examples of 
Section 3 are the only possible irreducible components of M .

2. Preliminaries

It is well known that an algebra A is commutative and power-associative if and only 
if A satisfies the following identity

x2x2 − x(xx2) = 0,

which is equivalent to its linearization

[x, y, z, w] = 0, (2.1)

where

[x, y, z, w] = 4
(
(xy)(zw) + (xz)(yw) + (xw)(yz)

)
− x

(
y(zw) + z(yw) + w(yz)

)
− y

(
x(zw) + z(xw) + w(xz)

)
− z

(
x(yw) + y(xw) + w(xy)

)
− w

(
x(yz) + y(xz) + z(xy)

)
.

Recall that a F -vector space M with left and right actions · of A on M is a commuta-
tive power-associative bimodule for A if the split null extension A +M is a commutative 
power-associative algebra. In particular, a ·m = m · a, for a ∈ A and m ∈ M . For this 
reason, we will refer to these bimodules as (left) modules. It is straightforward to see 
that M is a commutative power-associative module for A if, and only if,

4a2 · (a ·m) = a3 ·m + a · (a2 ·m) + 2a ·
(
a · (a ·m)

)
, (2.2)

for a ∈ A and m ∈ M .
Let A be a commutative power-associative algebra and let e ∈ A an idempotent. The 

Peirce Decomposition of A relative to this idempotent is

A = Ae(1) ⊕Ae(1
2 ) ⊕Ae(0),

where Ae(λ) = {x ∈ A : ex = λx}, for λ = 0, 1, 12 . These subspaces satisfy the following 
relations
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Ae(0)2 ⊆ Ae(0),

Ae(1
2 )2 ⊆ Ae(0) ⊕Ae(1),

Ae(1)2 ⊆ Ae(1),

Ae(0)Ae(1
2 ) ⊆ Ae(1

2 ) ⊕Ae(1),

Ae(0)Ae(1) = 0,

Ae(1
2 )Ae(1) ⊆ Ae(0) ⊕Ae(1

2 ).

For a ∈ A and λ ∈ {0, 1, 12}, we denote by aλ the component of a in the subspace Ae(λ). 
As proved in [2], we have, for each x ∈ Ae(1), a linear mapping S 1

2
(x) : Ae(1

2 ) → Ae(1
2 )

defined by S 1
2
(x)(y) = (xy) 1

2
, for y ∈ Ae(1

2 ). Moreover, S : Ae(1) →
[
EndF

(
Ae(1

2 )
)]+, 

which sends x ∈ Ae(1) to 2S 1
2
(x), is a homomorphism of Jordan algebras. Therefore,

Be = kerS = {b ∈ Ae(1) : bAe(1
2) ⊆ Ae(0)} (2.3)

is an ideal of Ae(1) and Ae(1)/Be is a Jordan algebra.
Let A be commutative power-associative algebra with unity 1 and let e1, . . . , en, n ≥ 3, 

be a set of pairwise orthogonal idempotents such that 1 = e1 + · · ·+ en. Then the Peirce 
Decomposition relative to this set of idempotents is

A =
⊕

1≤i≤j≤n

Aij , where Aii = Aei(1), Aij = Aei(1
2 ) ∩Aej (1

2 ), if i < j.

If j > i we denote Aji = Aij . These subspaces satisfy

A2
ii ⊂ Aii,

AiiAij ⊂ Aij + Ajj (i 	= j),

A2
ij ⊂ Aii + Ajj (i 	= j), (2.4)

AijAjk ⊂ Aik (i, j, k distinct),

AijAkl = 0 (k 	= i, j and l 	= i, j).

3. Examples of irreducible modules

Let J be a Jordan algebra with 1. Recall that its universal multiplication envelope 
U(J ) decomposes as

U(J ) = U0(J ) ⊕ U 1
2
(J ) ⊕ U1(J ),

where U1(J ) is the universal unital multiplication envelope of J and U0(J ) ⊕U 1
2
(J ) is 

canonically isomorphic to S(J ), the special universal envelope of J , via σ 
→ 2σ (see 
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[8, Chapter 2]). Moreover, this correspondence maps U 1
2
(J ), the universal envelope for 

semi-unital representations, to S1(J ), the unital special universal envelope of J .
Let A be an associative algebra with 1 and suppose that J is a subalgebra of the 

Jordan algebra A(+). Let M be an associative unital left A-module, with the action of 
a ∈ A on m ∈ M be denoted by am. Then, defining

a ·m = m · a = 1
2am, for a ∈ J ,m ∈ M,

M became a J -Jordan module, which corresponds to a semi-unital representation σ. By 
the above correspondence, 2σ is a unital associative specialization. In general, 2σ is not 
a Jordan representation. In fact, if 2σ is a Jordan representation, we must have

(xyx− x2 ◦ y)m = 0, for all x, y ∈ J ,m ∈ M.

For instance if A = Mn(D), with n > 1 and D any division algebra, taking x = e11 and 
y = e12 + e21, we should have y · m = 0, for every m ∈ M . Therefore, any irreducible 
left A-module could not be a Jordan J -module with the above action. However, 2σ is a 
representation of J as a commutative power-associative algebra, since the new action is 
given by

a ·m = m · a = am, for a ∈ J ,m ∈ M,

and (2.2) is clearly satisfied by any a ∈ J and m ∈ M , by the associativity of the original 
action of A on M .

In this section we present the relation of irreducible unital commutative power-
associative modules for Hn(F ), for n ≥ 3 which can be obtained from the structure 
of Jordan modules. Recall that the multiplication in Hn(F ) is the Jordan product 
x ◦ y = 1

2 (xy + yx) where xy denotes the usual matrix multiplication. A linear basis 
for Hn(F ) is

ei = eii (i = 1, . . . , n), uij = eij + eji (1 ≤ i < j ≤ n), (3.1)

where eij stands for the elementary matrix which has 1 in the entry (i, j) and 0 otherwise. 
We also denote uji = uij , for i < j.

Example 3.1. It is well known that the Hn(F )-regular module is an irreducible Jordan 
module. We denote this module by Hn(F ) and, for a ∈ Hn(F ), the corresponding element 
in Hn(F ) will be denoted by a. Therefore, the action of Hn(F ) in Hn(F ) satisfies, for 
distinct i, j, k, l,

ei · ei = ei, ei · ej = 0, ei · ujk = 0, ei · uij = 1
2uij ,

uij · uij = ei + ej , uij · ujk = 1
2uik, uij · ukl = 0, (3.2)

uij · ei = 1uij , uij · ek = 0.
2
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Example 3.2. It is also known that Sn(F ), the set of skew-symmetric matrices, is an 
irreducible Jordan module for Hn(F ). The action of Hn(F ) on Sn(F ) is also by the 
Jordan product, that is

a · v = v · a = 1
2 (av + va), for a ∈ Hn(F ), v ∈ Sn(F ).

Therefore, Sn(F ) is an example of irreducible commutative power-associative module for 
Hn(F ). If vij = eij−eji, for 1 ≤ i, j ≤ n, i 	= j, then vji = −vij and {vij : 1 ≤ i < j ≤ n}
is a linear basis of Sn(F ). The action of the canonical basis of Hn(F ) given in (3.1) on 
the elements vij is

ei · vij = 1
2vij , ek · vij = 0, uij · vij = 0, uij · vjk = 1

2vik, uij · vkl = 0, (3.3)

for distinct i, j, k, l.

Example 3.3. Recall that the unique irreducible unital Mn(F )-associative left module is 
the set Mn×1(F ) of n × 1 matrices with entries in F with the action given by matrix 
multiplication. Therefore,

m · a = a ·m = am, for a ∈ Hn(F ) and m ∈ Mn×1(F ),

where am stands for the usual matrix multiplication, defines a commutative power-
associative Hn(F )-module structure on Mn×1(F ). This module is not Jordan as noted 
before. The action of Hn(F ) on the basis {m1, . . . , mn} of Mn×1(F ),

ei ·mi = mi, ej ·mi = 0, uij ·mj = mi, uik ·mj = 0, (3.4)

for distinct i, j, k ∈ {1, . . . , n} will also be used.

In next sections we shall prove that Hn(F ), Sn(F ) and Mn×1(F ) are the only irre-
ducible commutative power-associative modules for Hn(F ) and every finite dimensional 
commutative power-associative module for Hn(F ) is completely reducible.

4. Commutative power-associative modules

From now on, let M be a commutative power-associative module for Hn(F ) and 
consider A = Hn(F ) + M the split null extension of M , as described above. The action 
of an element a ∈ Hn(F ) on m ∈ M will be denoted simply by am. Also, the Jordan 
product symbol in Hn(F ) will be omitted. Therefore, the multiplication in Hn(F ) is, for 
distinct i, j, k, l,

e2
i = ei; eiej = 0; eiuij = 1

2uij ; eiujk = 0;
u2 = e + e ; u u = 1u ; u u = 0.

(4.1)

ij i j ij jk 2 ik ij kl
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Recall that e1, . . . , en form a set of orthogonal idempotents and 1 = e1 + · · · + en. 
Let A =

⊕
1≤i≤j≤n Aij be the Peirce decomposition of A for this set of idempotents. If 

Mij = Aij ∩M , then

Aii = Fei ⊕Mii (1 ≤ i ≤ n) and Aij = Fuij ⊕Mij (i 	= j).

In what follows, identity (2.1), relations (2.4) and (4.1) and the fact that uij = uji

will be frequently used without being mentioned.

Lemma 4.1. Let M be a Hn(F )-module, let i, j, k ∈ {1, . . . , n} be distinct and let zik ∈
Mik. Then,

4uij(uijzik) = zik. (4.2)

Proof. It follows from [ei, uij , uij , zik] = uij(uijzik) − 1
4zik. �

Lemma 4.2. Let M be a Hn(F )-module, let i, j, k, l ∈ {1, . . . , n} be distinct and let zkl ∈
Mkl. Then,

2uij(ujkzkl) = uikzkl. (4.3)

Proof. It follows from [uki, ukj , ukj , zkl] = 4uij(ujkzkl) − 2uikzkl. �
Lemma 4.3. Let M be a Hn(F )-module, let i, j, k ∈ {1, . . . , n} be distinct and let zjk ∈
Mjk.

If ujkzjk = 0 then 2ujk(uikzjk) = −uijzjk. (4.4)

Proof. It follows from [ej , ujk, uik, zjk] = ujk(uikzjk) + 1
2uijzjk. �

Proposition 4.4. Let M be a Hn(F )-module and let z12 ∈ M12. Define

z1j = 2uj2z12, for j ≥ 3 and (4.5)

zij = 2ui1z1j for i, j ≥ 2, i 	= j. (4.6)

Then, for distinct i, j, k ∈ {1, . . . , n}, we have

2uijzjk = zik, for k ≥ 2, (4.7)

2uijzkj = zki, for i, j ≥ 2. (4.8)

Proof. Definition (4.6) is a particular case (j = 1) of (4.7). The other cases are obtained 
by multiplying (4.6) by 2u1i and 2uki (k ≥ 2):
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2u1izij = 4u1i(u1iz1j)
(4.2)= z1j ,

2ukizij = 4uki(u1iz1j)
(4.3)= 2uk1z1j

(4.6)= zkj .

In order to obtain relations (4.8) for k = 1, we multiply (4.5) by 2u2j and 2uij (i ≥ 3):

2u2jz1j = 4uj2(uj2z12)
(4.2)= z12,

2uijz1j = 4uij(uj2z12)
(4.3)= 2ui2z12

(4.5)= z1i. (4.9)

The remaining cases (k ≥ 2) follow using (4.6) and (4.9) in

[e1, u1j , uki, z1k] = 1
4zji −

1
2uikzjk. �

5. Submodules isomorphic to Sn(F )

Suppose there exists a nonzero element v12 ∈ M12 such that

u12v12 = 0. (5.1)

The aim of this section is to prove that the submodule of M generated by v12 is isomor-
phic to the module Sn(F ) of Example 3.2.

Define

v1j = 2uj2v12, for j ≥ 3; (5.2)

vij = 2ui1v1j , for i, j ≥ 2, i 	= j; (5.3)

vj1 = −v1j for j ≥ 2. (5.4)

Note that definitions (5.2) and (5.3) are similar to (4.5) and (4.6).

Lemma 5.1. For the elements vij defined in (5.1)–(5.4), we have

vji = −vij for every i, j ∈ {1, . . . , n}, i 	= j. (5.5)

Proof. The relation holds if 1 ∈ {i, j}, by definition (5.4).
If j ≥ 3, then

v2j
(5.3)= 2u12v1j

(5.2)= 4u12(uj2v12)
(4.4)= −2u1jv12

(5.3)= −vj2. (5.6)

For distinct i, j ≥ 3, we use (5.3), (4.7) and (5.6) in

[e1, u12, u1j , v2i] = 1
4vji + 1

4vij ,

which completes the proof. �
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Lemma 5.2. For the elements vij defined in (5.1)–(5.4), we have

uijvij = 0, for every i, j ∈ {1, . . . , n}, i 	= j.

Proof. If {i, j} = {1, 2}, the relation holds by (5.1) and (5.4). For j ≥ 3, we have

u2jv1j
(5.2)= 2u2j(u2jv12)

(5.4)= −2u2j(u2jv21)
(4.2)= −1

2v21
(5.4)= 1

2v12. (5.7)

Using (5.1), (5.2), (5.3), (5.6) and (5.7), we obtain

0 = [u12, u2j , u2j , v12] = 2u1jv1j (j ≥ 3). (5.8)

The remaining cases (i, j ≥ 2, i 	= j), follow from (5.4), (4.7) and (5.8) in

[e1, u1i, u1j , vij ] = −1
2uijvij . �

Lemma 5.3. For the elements vij defined in (5.1)–(5.4), we have

2uijvjk = vik, for distinct i, j, k ∈ {1, . . . , n}.

Proof. By Proposition 4.4, it only remains to prove the case k = 1. For i, j ≥ 2, i 	= j, 
we have

v1i
(4.7)= 2u1jvji

(5.5)= −2u1jvij
(5.3)= −4u1j(ui1v1j)

(4.4)= 2uijv1j
(5.4)= −2uijvj1.

Then, 2uijvj1 = −v1i
(5.4)= vi1, which concludes the proof. �

By Lemmas 5.1, 5.2 and 5.3, {vij : 1 ≤ i < j ≤ n} satisfy relations (3.3). As Sn(F )
is an irreducible Hn(F )-module and v12 	= 0, the submodule of M generated by v12 is 
isomorphic to Sn(F ). Therefore, we have proved:

Theorem 5.4. Let M be a Hn(F )-module. If there exists a nonzero element v12 ∈ M12
such that u12v12 = 0, then the submodule of M generated by v12 is isomorphic to the 
module Sn(F ) of Example 3.2.

6. Submodules isomorphic to the regular module

Now, suppose there exists a nonzero element z12 ∈ M12 such that u12z12 	= 0. Let

u12z12 = ε1 + ε2, εi ∈ Aii, i = 1, 2. (6.1)

As in (4.5) and (4.6), define
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z1j = 2uj2z12 (j ≥ 3) and zij = 2ui1z1j (i, j ≥ 2, i 	= j).

Moreover, let

zi1 = 2u21zi2 (i ≥ 3); (6.2)

z21 = 2u23z31; (6.3)

εi = ei(u1iz1i) (i ≥ 2). (6.4)

We shall prove that w12 = 1
2 (z12 + z21) generates a submodule isomorphic to the 

Hn(F )-regular module.

Lemma 6.1. For the elements zij and εi defined above, we have

uijzij = εi + εj , for all i, j ∈ {1, . . . , n}, i 	= j. (6.5)

Proof. For i = 1 and j = 2, the Lemma follows from (6.1).
Note that e1(u12z12) 

(6.1)= ε1 and, if j ≥ 3, using (4.5), (4.6) and (6.1) in

[e2, u1j , u2j , z12] = 1
2
(
u2jzj2 + ε1 − e2(u2jzj2) − u1jz1j

)

and multiplying the above relation by e1, we obtain the other cases of identity

e1(u1jz1j) = ε1 (j ≥ 2). (6.6)

As u1jz1j ∈ A11 + Ajj , using (6.4) and (6.6), we obtain

u1jz1j = ε1 + εj (j ≥ 2). (6.7)

Relation

uijzij = εi + εj (i, j ≥ 2, i 	= j) (6.8)

is obtained by using (4.6), (4.8) and (6.7) in [e1, u1i, uij , z1j ]. Now, we use (4.7), (6.1)
and (6.2) to obtain

[e1, u1i, u12, zi2] = 1
2
(
ui1zi1 − e1(ui1zi1) − εi

)
and

[ei, u1i, u12, zi2] = 1
2
(
ui1zi1 − ei(ui1zi1) − ε1

)
.

Comparing these two identities, we obtain

e1(ui1zi1) − ε1 = ei(ui1zi1) − εi ∈ Aii ∩A11 = 0.

Therefore, e1(ui1zi1) = ε1, ei(ui1zi1) = εi and
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ui1zi1 = ε1 + εi (i ≥ 3). (6.9)

It only remains to prove the identity for the element z21. First, observe that

u21zk1
(6.2)= 2u21(u21zk2)

(4.2)= 1
2zk2 (k ≥ 3). (6.10)

Then, using (6.3), (6.8), (6.9) and (6.10), we obtain

[e1, u12, u23, z31] = 1
2
(
u12z21 − e1(u12z21) − ε2

)
and

[e2, u12, u23, z31] = 1
2
(
u12z21 − e2(u12z21) − ε1

)
.

Proceeding as before, we conclude that u12z21 = ε1 + ε2. �
Lemma 6.2. For the elements zij and εi defined in the beginning of this section, we have

4uijεi = zij + zji, for all i, j ∈ {1, . . . , n}, i 	= j. (6.11)

Proof. For i, j ≥ 2, i 	= j, the result follows using (4.6), (4.8) and (6.5) in [e1, u1i, uji, z1i]. 
For i = 1 and j ≥ 3, we use (4.5), (4.7), (4.8), (6.2) and (6.5) to obtain

[e1, u1j , u2j , zj2] = 2u1jεj − e1(u1jεj) − 3
8z1j − 3

8zj1. (6.12)

Therefore, 2u1jεj − e1(u1jεj) = 3
8 (z1j + zj1) ∈ M1j . Write u1jεj = a + b, with a ∈ M11

and b ∈ M1j . Then, the following element belongs to M1j :

2u1jεj − e1(u1jεj) = 2a + 2b− a− 1
2b = a + 3

2b.

Then, a = 0 and u1jεj ∈ M1j . So, from (6.12) we get

4u1jεj = z1j + zj1. (6.13)

Analogously, as in (6.12), using [ej , u1j , u12, z12] = 2u1jε1 − ej(u1jε1) − 3
8 (zj1 + z1j), we 

obtain

4u1jε1 = z1j + zj1.

Now, using (4.7), (6.5) and (6.13) in [e2, u23, u13, z23], it follows that

4u23(u13z23) = z31

and, multiplying by u23 and using (4.2) and (6.3), we get

u13z23 = u23z31 = 1z21. (6.14)
2
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Then, we use (4.7), (4.8), (6.3), (6.5) and (6.14) in

[e1, u12, u23, z23] = 2u12ε2 − e1(u12ε2) − 3
8 (z12 + z21) and

[e2, u12, u13, z13] = 2u12ε1 − e2(u12ε1) − 3
8 (z21 + z12).

As before, we obtain 4u12ε2 = z12 + z21 and 4u12ε1 = z12 + z21, which concludes the 
proof. �
Lemma 6.3. For the elements zij and εi defined in the beginning of this section, the 
following identities hold

2uijzjk = zik and 2uijzkj = zki, for distinct i, j, k ∈ {1, . . . , n}.

Proof. Part of the verification of this Lemma was already done in Proposition 4.4, (6.10)
and (6.14). Let us prove the remaining cases.

We have

u32z21 = 2u23(u23z31)
(4.2)= 1

2z31.

Relation

2u1jzkj = zk1 (j, k ≥ 2, j 	= k) (6.15)

is obtained using (4.6), (4.8), (6.5) and (6.11) in [e1, u1j , u1k, z1j ]. Finally, using also 
(6.15), we get

2ui1zk1 = zki (i, k ≥ 2, i 	= k) and 2ui1zj1 = zi1 (i, j ≥ 2, i 	= j)

computing [e1, u1i, u1i, zki] and [ei, uij , u1i, zji], respectively. �
Now, for i, j ∈ {1, . . . , n}, i 	= j, define

wij = 1
2 (zij + zji).

Note that w12 	= 0, since u12w12 = ε1 + ε2 = u12z12 	= 0. It is straightforward to verify 
that the action of Hn(F ) on {εi, wij : i, j = 1, . . . , n} is the same as given in (3.2), 
replacing ei with εi and uij with wij , using Lemmas 6.1, 6.2 and 6.3. Again, as the 
regular module is irreducible and w12 	= 0, the submodule of M generated by w12 is 
isomorphic to the regular Hn(F )-module. Also, observe that, in terms of z12, we write 
z21 = 8u23

(
u12(u13z12)

)
. Therefore, we have proved:

Theorem 6.4. Let M be a Hn(F )-module. If there exists a nonzero element z12 ∈ M12
such that u12z12 	= 0, then the submodule of M generated by w12 = 1

2 (z12 + z21), where 
z21 = 8u23

(
u12(u13z12)

)
, is isomorphic to the regular Hn(F )-module.
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7. Irreducible non Jordan modules

As n ≥ 3, we are under the hypothesis of the results obtained in [12]. The following 
results are proved in [12], for A a commutative power-associative algebra with n ≥
3 orthogonal idempotents e1, . . . , en, such that 1 = e1 + · · · + en, a set of elements 
u12, . . . , u1n such that e1u1i = eiu1i = 1

2u1i and u2
1i = e1 + ei, i = 2, . . . , n and 

A =
⊕n

i,j=1 Aij being the Peirce decomposition of A relative to this set of idempotents:

(B1) For i = 1, . . . , n, the subspaces

Bi = {b ∈ Aii : bAik ⊆ Akk, for k = 1, . . . , n}

are pairwise isomorphic under the linear isomorphism which sends b ∈ Bi to buij ∈
Bj , for i 	= j, where uij = 2u1iu1j . Moreover, the ideal defined in (2.3) for the 
idempotent ei+ej can be obtained in terms of these subspaces as Bei+ej

= Bi+Bj .
(B2) The ideal

B :=
∑
i�=j

Bei+ej
=

∑
i�=j

Bi + Bj =
n⊕

i=1
Bi (7.1)

satisfies B2 = 0 and B = 0 if and only if A is a Jordan algebra.

Given M , a unital commutative power associative module for Hn(F ), we will consider 
the split null extension A = Hn(F ) + M . Taking {e1, . . . , en} to be the orthogonal set 
of idempotents, the elements u12, . . . , u1n ∈ Hn(H) will satisfy the above conditions.

Note that, for every b ∈ B1, we have, for distinct i, j ∈ {2, . . . , n},

[e1, u1i, uij , b] = 3
2
(
u1jb− uij(u1ib)

)
.

Therefore

uij(u1ib) = bu1j , for distinct i, j ∈ {2, . . . , n}. (7.2)

Lemma 7.1. Let M be a commutative power-associative module for Hn(F ) and let A =
Hn(F ) +M the split null extension of M . Then, the ideal B defined above for this algebra 
A is contained in M .

Proof. Let b = b1 + · · · + bn ∈ B, where bi ∈ Bi, i = 1, . . . , n. As B is an ideal of A, we 
have bi = eib ∈ B. Recall that Bi ⊆ Aii = Fei ⊕Mii. Then, bi = αiei + xi, with αi ∈ F

and xi ∈ Mii. Since B2 = 0, we must have 0 = b2i = α2
i ei + αixi; therefore, αi = 0, for 

all i = 1, . . . , n. Then b = x1 + · · · + xn ∈ M . �
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Proposition 7.2. Let M be a commutative power-associative module for Hn(F ). If M is 
not a Jordan module then M contains a submodule isomorphic to a direct sum of r copies 
of the module Mn×1(F ) of Example 3.3, for a convenient positive integer r.

Proof. If M is not a Jordan module, the ideal B defined in (7.1) for the split null exten-
sion A = Hn(F ) + M is nonzero. By the previous lemma, B ⊆ M . Let {b11, . . . , b1r} ⊆
M11 be a basis of B1. For each i = 2, . . . , n and j = 1, . . . , r, let

bij = u1ib1j .

As mentioned in (B1), {bi1, . . . , bir} is a basis of Bi, for all i.
Let Mj the subspace of M generated by {b1j , b2j , . . . , bnj}, that is, take the jth element 

of Bi, for all i = 1, . . . , r. Relation (7.2) and the properties of Peirce Decomposition 
show that Mj is an Hn(F )-module isomorphic to the irreducible module Mn×1(F ) of 
Example 3.3, since the action of Hn(F ) on Mj is the same as (3.4). Therefore,

B = B1 ⊕ · · · ⊕Bn = M1 ⊕ · · · ⊕Mr,

is isomorphic to a direct sum of r copies of the module Mn×1(F ). �
Corollary 7.3. The module Mn×1(F ) given in the Example 3.3 is the only irreducible 
unital module for the commutative power-associative algebra Hn(F ) which is not a Jordan 
module.

8. Classification of finite dimensional unital modules

We are ready to prove our main theorem.

Theorem 8.1. Let F be a field of characteristic different from 2, 3 and 5 and let n ≥ 3
an integer. Then, there are, up to isomorphisms, three unital irreducible commutative 
power-associative Hn(F )-modules: the regular Hn(F )-module, and the modules Sn(F )
and Mn×1(F ) of Examples 3.2 and 3.3. Moreover, every finite dimensional unital Hn(F )-
module is completely reducible.

Proof. Let M be a finite dimensional unital Hn(F )-module and let M =
⊕n

i,j=1 Mij be 
the Peirce Decomposition of M .

Let B the ideal defined in (7.1) for the split null extension A = Hn(F ) + M . By 
Proposition 7.2, if M is not a Jordan module, we have a basis {bij : i = 1, . . . , n; j =
1, . . . , r} of B, with bij ∈ Mii, i = 1, . . . , n, and B isomorphic to the sum of r copies of 
the irreducible module Mn×1(F ) of Example 3.3. If M is a Jordan module, then B = 0
and r = 0.

Define M0
12 = {m ∈ M12 : u12m = 0} and let {v(1)

12 , . . . , v(t)
12 } be a basis of M0

12. 
Complete to a basis {v(1)

12 , . . . , v(t)
12 , z

(1)
12 , . . . , z(s)

12 } of M12 (we could have t and/or s equal 
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to zero). Then, we have u12z
(k)
12 	= 0, for k = 1, . . . , t. For each k, let w(k)

12 = 1
2 (z(k)

12 +z
(k)
21 ), 

where z(k)
21 = 8u23

(
u12(u13z

(k)
12 )

)
. Then I = {v(1)

12 , . . . , v(t)
12 , w

(1)
12 , . . . , w(s)

12 } is still a basis 
of M12, since x(k)

12 = 1
2 (z(k)

12 − z
(k)
21 ) ∈ M0

12 and w(k)
12 = z

(k)
12 + x

(k)
12 .

By Theorem 6.4, w(k)
12 generates a submodule isomorphic to the regular Hn(F )-

module. Let w(k)
ij ∈ Mij and ε(k)

i ∈ Mii, i, j = 1, . . . , n, be the elements produced starting 

with w(k)
12 as in the beginning of Section 6, for k = 1, . . . , s. Also, by Theorem 5.4, v(i)

12
generates a submodule isomorphic to Sn(F ). As well, let v(l)

ij ∈ Mij , i, j = 1, . . . , n, 
be the elements obtained from v(l)

12 as in the beginning of Section 5, for l = 1, . . . , t. 
We claim that C = {v(l)

ij , w
(k)
ij , ε(k)

i : i, j = 1, . . . , n; l = 1, . . . , t; k = 1, . . . , s} is a lin-
early independent set. This fact follows by observing that C ∩ Mii = {ε(1)

i , . . . , ε(s)
i }

and C ∩ Mij = {v(1)
ij , . . . , v(t)

ij , w(1)
ij , . . . , w(s)

ij }, for i 	= j, and any linear combination of 
elements in these sets can be transformed into a linear combination of elements in I by 
multiplying for convenient elements u1i and/or u2j , depending if i, j ∈ {1, 2} or not, 
using Lemmas 5.3 and 6.3 (for instance, for a linear combination of elements in C∩M34, 
multiply by u13 and, then, by u24; for C ∩ M23, multiply only by u13; for C ∩ M33, 
multiply by u13 and, then, by u23).

The same procedure used to show that C ∩ Mij is a linearly independent set shows 
that this set is a basis of Mij : take some m ∈ Mij . By multiplying for convenient 
elements u1i and/or u2j we get an element in M12 which has basis I. Then, this element 
can be written as linear combination of v(l)

12 and w(k)
12 , l = 1, . . . , t and k = 1, . . . , s. 

Multiplying again by the same u1i and/or u2j in the reverse order (if there are two) and 
using also Lemma 4.1, we obtain, on the one hand, a scalar multiple of m and, on the 
other hand, a linear combination of elements in C ∩Mij . For instance, if m ∈ M23 then 
1
4m = u13(u13m︸ ︷︷ ︸

∈M12

); if m ∈ M34 then 1
16m = u13

(
u24

(
u24(u13m)︸ ︷︷ ︸

∈M12

))
.

Finally, let m ∈ Mii. Then, for each j = 1, . . . , n, j 	= i, we have uijm ∈ Mij + Mjj . 
So, write

uijm = zij + yij + xj , (8.1)

with zij ∈ span{w(k)
ij , 1 ≤ k ≤ s}, yij ∈ span{v(l)

ij , 1 ≤ l ≤ t} and xj ∈ Mjj . First, we 
will show that yij = 0. In order to prove this statement consider j 	= k (different from i) 
and write

yij =
t∑

l=1

αlv
(l)
ij and yik =

t∑
l=1

βlv
(l)
ik .

On the one hand, using [ej, uij , uik, m] = 0 we obtain that αl + βl = 0 and, on the other 
hand, from ei[ej , uij , ujk, m] = 0, we conclude that αl − βl = 0. Then, αl = 0 (= βl), for 
each l = 1, . . . , t. Consequently, yij = 0 and we can rewrite (8.1) as
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uijm =
s∑

k=1

γkw
(k)
ij + xj ,

where γk ∈ F . Let n = m −
∑s

k=1 2γiε(k)
i . Then,

uijn = uijm−
s∑

k=1

γiw
(k)
ij = x ∈ Mjj , for j = 1, . . . , n.

Therefore, n ∈ Bi and m = n +
∑s

k=1 2γiε(k)
i ∈ Bi + span(C ∩ Mii), that is Mii =

Bi+span(C∩Mii). Moreover, as uijBi ⊆ Bj ⊆ Mjj and uijε
(k)
i ∈ Mij , for j 	= i and k =

1, . . . , s, we conclude that Bi∩span(C∩Mii) = 0. This means that {bi1, . . . , bir} ∪(C∩Mii)
is a basis of Mii.

We have completely described the Peirce components of M , producing a basis of 
each one of these components, in a way that they also form bases for the irreducible 
submodules of M : we have obtained that M direct sum of r copies of Mn×1(F ), t copies 
of Sn(F ) and s copies of the regular Hn(F )-module. �

As a consequence, we reobtain the classification of irreducible unital Jordan modules 
for Hn(F ) due to N. Jacobson ([7]).

Corollary 8.2. Let n ≥ 3 a integer. Then, there exist exactly two nonisomorphic irre-
ducible unital Jordan modules for Hn(F ): the regular Hn(F )-module and Sn(F ), the 
module of skew-symmetric matrices over F .

The description of irreducible unital commutative power-associative modules for 
H2(F ) is quite different. The structure of these modules will be described in another 
paper.
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